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Abstract- In this paper, we have developed a 

deterministic mathematical model that discribe the 

transmission dynamics of novel corona virus with 

prevention control. The disease free and endemic 

equilibrium point of the model were calculated and 

its stability analysis were prformed. The 

reproduction number R0 of the model which 

determine the persistence of the disease or not was 

calculated by using next generation matrix and also 

used to determine the stability of the disease free and 

endemic equilibrium points which exists 

conditionally. Furthermore, sensitivity analysis of 

the model was performed on the parameters in the 

equation of reproduction to determine their relative 

significance on the transmission dynamics of 

COVID- 19 pandemic disease. Finally the 

simulations were carried out using MATLAB 

R2015b with ode45 solver. The simulation results 

illustrated that applying prevention control can 

successfully reduces the transmission dynamic of 

COVID-19 infectious disease.  
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Covid-19 is an infectious disease caused by the

newly-discovered virus strain SARS-CoV-2 and

spreads through the respiratory trac [19]. Coro-

navirus disease is an infectious disease caused

by recently discovered COVID-19 virus. It is

a new strain that was discovered in 2019 and

has not been yet identified in humans[7, 8, 10].

The COVID-19 is a novel coronavirus that was

first reported to the world health organization of-

fice in China on 31 December 2019 [5]. On

January 30, 2020, the epidemic was declared a

health emergency of international concern. On

February 2020, world healthy organization an-

nounced a name for the new coronavirus-19 dis-

ease "COVID-19" [8]. Most of the studies about

COVID-19 suggest that coronaviruses, includ-

ing preliminary information, COVID-19 virus

can stay on the surface of an object for hours

or days[7]. The most common symptoms of

COVID-19 are fever, dry cough, fatigue, tired-

ness , shortness of breath and breathing difficul-

ties [6, 9]. Some of the patients may have aches

and pains, nasal congestion, running noses, a sore

throat or diarrhea. The Symptoms are usually

mild, but they may get worse. When an infected

person coughs or sneezes, it spreads from per-

son to person through droplets in the air and be-

tween people who are in close contact with one

another with in about half dozen feet. Most of

the transmission is happening through respiratory

droplets that we may inhale from close contact

with one another [3]. Recent studies have evalu-

ated the survival of the COVID19 virus on various

surfaces and reported how long the virus can sur-

vive up to 72 hours on plastic and stainless steel,

up to four hours on copper, and up to 24 hours

on cardboard. Apr 7, 2020. The incubation pe-

riod within which the symptoms would appear is

2 − 14 days[9]. In the most severe cases infec-

tion can cause pneumonia, sever acute respiratory

syndrome and even death. There is no specific

treatment for the disease caused by COVID-19

infectious viruse. However, many of the symp-

toms can be treated and therefore the treatment is

based on the patient’s clinical condition. The best

ways that are recommended by WHO to prevent

the novel coronavirus (COVID-19) are, taking

vaccine of covid-19, washing hands often with

soap and water, if not available use hand sani-

tizer, avoid touching your eyes, nose and avoid

close contact with others, cover your mouth/nose

with a tissue or sleeve when coughing or sneezing

and so on [8].

At the moment, COVID-19 is of great empha-

sis to researchers, governments, and all people

because of the high rate of the infection out-

break and the significant number of deaths that

occurred. Chen et al [11] developed Bats-Hosts-

Reservoir -People transmission network model

for simulating the potential spread of infection

from the source of infection (possibly from bats)

to humans infection. Bats-Hosts-Reservoir’s net-

work has been difficult to study clearly, and the

public concerns have been focused on streaming

media from Huanan Seafood Wholesale Market

(reservoir) to people, they simplified the model

as Reservoir-People (RP) transmission network

model. The model showed that the transmis-

sion of SARS-CoV-2 was higher than the Mid-

dle Eastern countries are similar to severe acute

respiratory syndrome, but lower than South Ko-

rea’s MERS. Furthermore, Chayu Yang and Jin

Wang [13] model describes the multiple trans-

mission pathways in the infection dynamics, and

emphasize the role of environmental hosts in the

spread of this disease. Analysis and numerical

results show that coronavirus infections will con-

tinue to be prevalent, requiring long-term disease

I. INTRODUCTION 
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prevention and intervention plans. In this paper,

we propose a mathematical model for pandemic

Covid-19 transmission dynamics, which accounts

for optimal control. We consider a special class

called quarantine class at which an inividuals are

compulsory quarantine to minimize the expan-

sion of COVID-19 and get treatment at this class

. To join this class, individuals must present ev-

idences to be exposed, infected in symptomatic

and asymptomatic phase. Evidences could be the

measures put in place to ensure an individual with

risk living environment. We believe that invest-

ing in this group of individuals could significantly

curtail the spread of COVID-19 while ensuring

adding an optimal control to the model reduce the

dynamic transmission of the disease.

The individuals that make up the population can

be divided into different classes. The popula-

tion function in the compartment is the time-

differentiable (t), and the output of the model

is fully determined by the parameter values and

the initial conditions which is deterministic. The

COVID-19 model sub-divided the total popula-

tion N(t) at any time t, into five different com-

partments, namely,

• Susceptible individuals ( vulnerable or prone

to the disease) S(t).

• Exposed individuals ( already infected but

are not yet infectious ) E(t).

• Asymptomatic individuals ( both infected

and infectious but do not show any symp-

toms of the disease) A(t).

• Infected individuals ( infectious and shows a

symptoms of the disease ) I(t) and

• Quarantine individuals(infectious and com-

pulsory quarantine to minimize the expan-

sion of COVID-19 ) Q(t).

Then the total number of population N(t) in the

model at time t, is given by

N(t) = S(t) + E(t) +A(t) + I(t) +Q(t).

The model formed assumed that; susceptible in-

dividuals are recruited (by birth or immigration)

into the population at a constant rate π. A pro-

portion of these susceptible individuals become

exposed to COVID-19 infection at a rate λ when

their is an effective contact with an infectious in-

dividuals at a rate β and move to E(t) class that

may lead to infectious class or quarantine class

due to reduce the expansion of the virus at a rate

ϕ. The force of infection(or rate of infection)

of the model is given by λ = β(I+qA)
N , where

β is an effective contact rate and q is the trans-

mission coefficient for the asymptomatic individ-

uals. If q > 1 then the asymptomatic individuals

infect the susceptible indiviuals more likely than

the infective individuals. If q < 1, then the in-

fected individuals have a good chance to infect

the susceptible individuals than asymptomatic in-

dividuals and if q = 1, then both asymptomatic

and infected individuals have equal chance to in-

fect the susceptible individuals. After the disease

incubation priod 1
η , where η is a per capita rate

of becoming infections a proportion of p of the

individuals in E(t) may develop a symptoms of

the COVID-19 infection and move to the infected

compartment I(t) at a rate pη and the rest be-

come asymptomatic individuals with COVID-19

infection with probability (1−p) and move to the

A(t) at a rate (1 − p)η. Furthermore, an individ-

ual in asymptomatic A(t) compartment move to

the quarantine class Q(t) at a rate γ due to they

distrust that they are exposed to COVID-19 infc-

tious disease. The infected individuals I(t) move

II. MODEL ASSUMPTION 
     AND FORMULATION 
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to quarantine class Q(t) and get a treatement at a

rate α. A quarantine individuals may revert to the

susceptible class S(t) after gettin treatment and

lossing their immunity at a rate θ. Both infectious

individuals in N(t) have induced death at a rate

ζ. All individuals in N(t) suffers natural mortal-

ity at a rate µ and all the parameter in the model

are non-negative.

Depending on the basic assumptions together

with the both model variables and parameters, the

schematic diagram of the flow between the five

compartments of the modified model can be given

as in figure as follow.

Figure 1: Schematic diagram of the transmission

dynamic of COVID-19 model

Based on the model assumptions, notations of

the variables and parameters the model equations

are formulated into a system of five nonlinear

ODEs as follows:

dS
dt = π + θQ− (λ+ µ)S,
dE
dt = λS − (µ+ η + ϕ)E,
dA
dt = (1− p)ηE − (µ+ γ + ζ)A,
dI
dt = pηE − (µ+ α+ ζ)I,
dQ
dt = αI + γA+ ϕE − (θ + µ)Q.

(2.1)

With non-negative initial conditions denoted by

S(0) = S0 > 0, E(0) = E0 ≥ 0, A(0) = A0 ≥
0, I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0.

In this section, we deal about an invariant region

in which the model solutions of the system are

uniformly bounded, which is a proper subset of

Ω ⊂ R5
+.

The total population N of the model at any time

t is given by

N(t) = S(t) + E(t) +A(t) + I(t) +Q(t)
dN
dt = dS(t)

dt + dE(t)
dt + dA(t)

dt + dI(t)
dt + dQ(t)

dt

dN
dt = π − µN − ζ(A+ I).

III. MODEL ANALYSIS 

A. Invariant Region 
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dN

dt
≤ π − µN. (3.2)

By solving equation 3.2 we obtain 0 ≤ N ≤ π
µ .

Therefore, the feasible solution set of the system

equation 2.1 of the model remain in the region:

Ω = {(S,E,A, I,Q) ∈ R5
+ : N ≤ π

µ}.

The reliability of any mathematical model de-

pends on whether the given equations have solu-

tions, and if the solution exists then it is unique.

We shall use the Lipschitz condition to verify the

existence and uniqueness of solution for the sys-

tem of equation (2.1).

Theorem 1. : Let Ω denote the region 0 < α ≤
R. Then the model equations (2.1) together with

the initial conditions S(0) > 0, E(0) ≥ 0,

A(0) ≥ 0, I(0) ≥ 0, Q(0) ≥ 0 exist in R5
+.

proof: Let the right hand side of the system of

equation (2.1) can be expressed as follows:

f1(S,E,A, I,Q) = π + θQ− (λ+ µ)S

f2(S,E,A, I,Q) = λS − (µ+ η + ϕ)E

f3(S,E,A, I,Q) = (1− p)ηE − (µ+ γ + ζ)A

f4(S,E,A, I,Q) = pηE − (µ+ α+ ζ)I

f5(S,E,A, I,Q) = αI + γA+ ϕE − (θ + µ)Q.
(3.3)

We have to show that ∂fi
∂xj

, i, j = 1, 2, 3, 4, 5
are continues and bounded in Ω.

According to [1], let Ω denote the region

Ω = (S,E,A, I,Q) ∈ R5
+;N ≤ π

µ .

Then equations (2.1) have a unique

solution if ∂fi
∂xj

, i, j = 1, 2, 3, 4, 5
are continuous and bounded in Ω .

Here, x1 = S, x2 = E, x3 = A, x4 = I, x5 = Q.

The continuity and the boundedness are verified

here under:

For f1:

|∂f1
∂S | = | − (λ+ µ)| <∞,

|∂f1
∂E | = 0 <∞,

|∂f1
∂A | = | −

βq
N | <∞,

|∂f1
∂I | = |

−β
N | <∞,

|∂f1
∂Q | = |θ| <∞.

For f2:

|∂f2
∂S | = |λ| <∞,

|∂f2
∂E | = | − (η + ϕ+ µ)| <∞,

|∂f2
∂A | = |

β q
N | <∞,

|∂f2
∂I | = |

β
N | <∞,

|∂f2
∂Q | = 0 <∞.

For f3:

|∂f3
∂S | = 0 <∞,

|∂f3
∂E | = |(1− p)η| <∞,

|∂f3
∂A | = | − (γ + µ+ ζ)| <∞,

|∂f3
∂I | = 0 <∞,

|∂f3
∂Q | = 0 <∞.

For f4:

|∂f4
∂S | = 0 <∞,

|∂f4
∂E | = |pη| <∞,

|∂f4
∂A | = |φ| <∞,

|∂f4
∂I | = | − (α+ µ+ ζ)| <∞,

|∂f4
∂Q | = 0 <∞.

For f5:

|∂f5
∂S | = 0 <∞,

|∂f5
∂E | = |ϕ| <∞,

|∂f5
∂A | = |γ| <∞,

|∂f5
∂I | = |α| <∞,

|∂f5
∂Q | = | − (θ + µ)| <∞.

Thus, all the partial derivatives ∂fi
∂xj

, i, j =
1, 2, 3, 4, 5 exist, continuous and bounded in Ω.

Hence, by Derrick and Groosman theorem, a

solution for the model (2.1) exists.

It is also necessary to prove that all the model

variables of of equation (2.1) are non-negative;

B. Existence of the model solutions. 

C. Positivity of the Solution of the Model 
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Such that the solution of the system with non-

negative initial conditions remains positive for all

t > 0. The following lemma shows about this

facts.

Lemma 1. (Positivity) Solutions of the model

equations (2.1) together with the initial condi-

tions S(0) > 0, E(0) ≥ 0, A(0) ≥ 0, I(0) ≥
0, Q(0) ≥ 0 are always positive (OR) the

model variables S(t), E(t), A(t), I(t) and Q(t)
are positive for all t and will remain in R5

+.

Proof: Positivity of the model variables are

shown separately for each of the model variables

S(t), E(t), A(t), I(t) and Q(t).

Positivity of P(t): The model equation in (2.1)

given by dS
dt = π + θR − (µ + λ)S can be ex-

pressed without loss of generality (WOLG), after

eliminating the terms (π + θR) which are ap-

pearing on the right hand side, as an inequality

as dS
dt ≥ −(µ + λ)S . Solving the above prob-

lems with the method of separable variables and

on applying integration, the solution of the fore-

going differentially inequality can be obtained as

S(t) ≥ e−µt−
β
N

∫
(I+qA)dt. Remember that re-

gardless of the sign of the exponent, the exponen-

tial function is always non-negative.

Thus, the exponential function e−µt−
β
N

∫
(I+qA)dt

is a non-negative quantity.

Hence, it can be concluded that S(t) > 0.

Similarly, solving the system of differential

equation of the model, we obtain the exponential

function:

E(t) ≥ e−(µ+η+ϕ)t,

A(t) ≥ e−(µ+γ+ζ)t,

I(t) ≥ e−(µ+α+ζ)t,

Q(t) ≥ e−(µ+θ)t.

Remember that regardless of the sign of the ex-

ponent, the exponential function is always non-

negative. Hence, it can be concluded that all

the solutions of model equations are positive.

Thus, the model variables S(t), E(t), A(t), I(t)
and Q(t) representing population sizes of vari-

ous types of cells are non-negative quantities and

will remain in R5
+ for all t.

In this part, we got the balance point at which the

epidemic of residents was eliminated. Setting the

right-hand side of Equation 2.1 to zero and letting

E = A = I = Q = 0, leads to

E0 = {S0, E0, A0, I0, Q0} = {πµ , 0, 0, 0, 0}

The basic reproduction rate, expressed as R0,

is the average number of secondary infections

caused by an infectious individual during his or

her entire period of infectiousness [1]. The ba-

sic reproduction number is an important dimen-

sionless quantity in epidemiology because it has

a threshold in the study of a disease both for pre-

dicting its outbreak and for evaluating its control

strategies [1]. Therefore, whether disease persists

or disappears in the community depends on the

values of the reproduction number, R0. Further-

more, the stability of the equilibrium point can be

analyzed using R0 [2]. If R0 < 1 it means that

every infectious individual will cause less than

one secondary infection which is impossible and

hence the disease will die out and when R0 > 1
every infectious individual will cause more than

one secondary infection and hence the disease

will invade the population. It is obtained by tak-

ing the largest (dominant) eigenvalue (spectral ra-

dius).

R0 = [∂Fi(x0)
∂xj

][∂Vi(x0)
∂xj

]−1

where Fi be the rate of appearance of new crimi-

nal in compartments, Vi is the transfer of individ-

uals out of the compartment by another means,

D. Disease Free Equilibrium Points 

E. The Basic Reproduction Number 
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x0 is the disease free equilibrium point. We can

find the basic reproduction number using the next

generation matrix approch[1, 2].

Thus the associated matrices F and V for the

new infectious terms and the remaining transition

terms are respectively given by:

Fi =


β( I+qA)S

N

0
0
0

 and

Vi =


(η + ϕ+ µ)E

−(1− p)ηE + (µ+ γ + ζ)A
−pηE + (α+ µ+ ζ)I

−ϕE − γA− αI + (θ + µ)Q


The Jacobian of Fi and Vi at the disease free

equilibrium point E0 takes the form respectively

as:

F (E0) =


0 βq β

0 0 0
0 0 0

 and

V (E0) =


b 0 0 0

−(1− p)η c 0 0
−pη 0 d 0
−ϕ −γ −α e


where, b = η + ϕ+ µ, c = µ+ γ + ζ,

d = α+ µ+ ζ, e = θ + µ.

It can be verified that the matrix V (E0) is non-

singular as its determinant is non-zero.

That is

det(V (E0)) =

∣∣∣∣∣∣∣∣∣∣∣

b 0 0
−(1− p)η c 0
−pη 0 d

−ϕ −γ −α e

∣∣∣∣∣∣∣∣∣∣∣
=

bcde 6= 0
Since det(V (E0)) 6= 0 then V (E0) is invertable

and the inverse is given by .

(V (E0))−1 = Adj(V )
det(V ) (3.4)

Then after some algebraic computations the

inverse matrix is constructed as follows:

[V (E0)]−1 =


1
b 0 0 0

(1−p)η
bc

1
c 0 0

pη
bd 0 1

d 0
cpηα+cdϕ+dγη(1−p)

bcde
γ
ce

α
de

1
e


(3.5)

Now ,

[F (E0)][V (E0)]−1 =


βη(pqc+(1−p)d)

bcd
β
c

βq
d 0

0 0 0 0
0 0 0 0
0 0 0 0


(3.6)

Thus the eigenvalues of the matrix (3.6) are:

λ1 = βη(pqc+(1−p)d)
bcd , λ2 = 0, λ3 = 0, λ4 = 0

where, b = η + µ + ϕ, c = µ + γ + ζ, d =
α+ µ+ ζ, e = µ+ θ

Now, [F (E0)][V (E0)]−1 is the next-generation

matrix of system (2.1). It follows that the spectral

radius of the matrix [F (E0)][V (E0)]−1 denoted

and defined by [20]:

Then from λ1, λ2, λ3 the dominant eigenvalue

is λ1 = βη(pqc+(1−p)d)
bcd .

Therefore the basic reproduction number is given

by

R0 = βη(pq(µ+γ+ζ)+(α+µ+ζ)(1−p))
(η+µ+ϕ)(µ+γ+ζ)(α+µ+ζ)(µ+θ) .

The endemic equilibrium point denoted by

E1 = {S∗, E∗, A∗, I∗, Q∗} is a steady state solu-

tion where the disease persists in the population.

The endemic equilibrium point of a model is a

solution of the system of equation. Then solving

the system of differential equation (2.1) by sub-

stitution and after some algebraic simplificaton

we obtain: E1 = {S∗, E∗, A∗, I∗, Q∗} as:

F. Endemic Equilibrium Points 
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S∗ = N∗

R0
,

E∗ = πcde
bcde−[pcαηθ+(1−p)γηθd+ϕθdc](1−

1
R0

),

A∗ = (1−p)πηde
bcde−[pcαηθ+(1−p)γηθd+ϕθdc](1−

1
R0

),

I∗ = πηpce
bcde−[pcαηθ+(1−p)γηθd+ϕθdc](1−

1
R0

),

Q∗ = π
θ [ bcde
bcde−[pcαηθ+(1−p)γηθd+ϕθdc] + 1](1 −

1
R0

),

where, b = η + µ+ ϕ, c = µ+ γ + ζ,

d = α+ µ+ ζ, e = θ + µ.

From the above solution of the model we con-

clude that a positive unique endemic quilibrium

point exists whenever R0 > 1.

Theorem 2. The disease free equilibrium point,

E0 of the system (2.1) is locally asymptotically

stable if R0 < 1 and unstable otherwise.

Proof: Consider the right hand side expressions

of the equations (2.1) as functions so as to find

the Jacobian matrix at the DFE as:

J(E0) =



−µ 0 −βq −β θ

0 −b βq β 0
0 (1− p)η −c 0 0
0 pη 0 −d 0
0 ϕ γ α −e


(3.7)

Where b = µ+ η + ϕ, c = µ+ γ + ζ,

d = µ+ α+ ζ, e = θ + µ

The characteristic equation of the Jacobian ma-

trix at the disease free equilibrium point is given

by (µ+ λ)(e+ λ)(λ3 + a1λ
2 + a2λ+ a3) = 0,

where

a1 = b+ c+ d = 3µ+ 2ζ + η + ϕ+ α+ γ,

a2 = bc+ bd+ cd− βη[p(1− q) + q]

= 3µ2 + µ(2η + 2ϕ + 2γ + 2α + 3ζ) + ζ22 +
ζ(2γ + 2η + 2ϕ + α) + γ(η + ϕ + α) + α(η +
ϕ)− βη[p(1− q) + q],

a3 = bcd(1−R0) = (µ+η+ϕ)(µ+γ+ ζ)(µ+

α+ ζ)(1−R0),
Then, (µ+ λ)(e+ λ) = 0 or

λ3 + a1λ
2 + a2λ+ a3 = 0

From this the first two eigenvalues

λ1 = −µ, λ2 = −e, are real, distinct and nega-

tive.

To determine the sign of the three left eigenvalues

we use the Routh-Hurwitz criteria for the cubic

equation; λ3 + a1λ
2 + a2λ + a3 = 0. Accord-

ing to the Routh-Hurwitz criteria the three roots

of a polynomial of order three of type p(λ) =
λ3 + a1λ

2 + a2λ + a3 , are real distinct and

negative if the coefficients satisfy the conditions

a1 > 0, a2 > 0, a3 > 0 and a1a2 > a3

It is straight forward to verify that this conditions

are satisfied and hence the last three eigenvalues

are real typical and negative.i.e

a1 > 0⇒ b+ c+ d > 0
a2 > 0⇒ bc+ bd+ cd > βη[p(1− q) + q]
a3 > 0⇒ bcd(1−R0) > 0⇒ R0 < 1 and

a1a2 > a3⇒ (b+ c+d)(bc+ bd+ cd+βqη(p−
1)− βpη) > bcd(1−R0).

= b2(c + d) + c2(b + d) + d2(b + c) + 3bcd −
βη(b+ c+ d)(p+ q(1− p)) > bcd(1−R0)
Therefore the disease free equilibrium point of the

system of ordinary differential equation (2.1) is

locally asymptotically stable if R0 < 1.

Theorem 3. The disease free equilibrium point

E0 of the model equation (2.1 is globally asymp-

totically stable if R0 < 1.

Proof: To establish the global stability of the

disease-free equilibrium point, we construct a

Lyapunov function. Let Ω ⊆ R5
+ be an open

neighborhood of the disease free equilibrium

point E0 of the function;

G. Local Stability of Disease Free Equilibrium Points 

H. Global Stability of the Disease Free Equilibrium Point 
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L : Ω −→ R (L(E0) = 0).

Then the function L, defined by:

L(S,E,A, I,Q) = B1
2 (E(t))2 + B2

2 (A(t))2 +
B3
2 (I(t))2

where Bi , for i = 1, 2, 3 are some positive

constants to be chosen later.

Then L(S,E,A, I,Q) should satisfies the fol-

lowing properties to be a lyapunov function:

i)L is continuously differentiable.

ii)L > 0,∀x ∈ Ω \ E0 and L(E0) = 0, as

(E(t))2 ≥ 0, (A(t))2 ≥ 0, (I(t))2 ≥ 0 .

iii)dLdt ≤ 0 in Ω, then E0 is stable.

The first two condition holds, as L it is continu-

ously differentiable and L > 0, ∀x ∈ Ω \ E0 and

L(E0) = 0. Now let we check the third condition
dL
dt ≤ 0 in Ω.
dL
dt = B1

dE
dt +B2

dA
dt +B3

dI
dt

= B1(λS − (µ+ η + ϕ)E) +B2((1− p)ηE −

(µ + γ + ζ)A) + B3(pηE − (µ + α + ζ)I)
= B1(λS − (µ+ η + ϕ)︸ ︷︷ ︸

b

E) + B2((1− p)ηE −

(µ+ γ + ζ)︸ ︷︷ ︸
c

A) +B3(pηE − (µ+ α+ ζ)︸ ︷︷ ︸
d

I)

= B1(λS − bE) + B2((1 − p)ηE − cA) +

B3(pηE − dI)
= B1(β(I+qA)

N S−bE)+B2((1−p)ηE−cA)+

B3(pηE − dI), S ≤ N at E0.

= B1(β(I + qA) − bE) + B2((1 − p)ηE −

cA) +B3(pηE − dI)
= B1βI + B1βqA − B1bE + B2(1 − p)ηE −

B2cA+B3pηE −B3dI

= (B3pη + B2(1 − p)η − B1b)E + (B1β −

B3d)I + (B1βq −B2c)A
= B1b( (B3pη+B2(1−p)η

B1b
−1)E+(B1β−B3d)I+

(B1βq −B2c)A.

Now choosing B3 = βc, B2 = βdq,B1 = cd.

Then,

dL
dt = bcd(βcpη+βqd(1−P )η

bcd − 1)E +

(cdβ − βcd)I + (cdβq − βdqc)A
= bcd(βcpη+βqd(1−p)η

bcd − 1)E + 0

= bcd ((pc+ qd(1− p))βη
bcd︸ ︷︷ ︸
R0

−1)E

= bcd(R0 − 1)E

Therefore dL
dt ≤ bcd(R0−1)E < 0 ifR0−1 < 0.

Thus , this is true when R0 < 1 which implies

that dL
dt is negative. Therefore the largest com-

pact invariant set in Ω is singleton set E0. Hence

LaSalle’s invariant principle [15] implies that

E0 is globally asymptotically stable.

Theorem 4. The endemic equilibrium point

E1 = (S∗, E∗, A∗, I∗, Q∗) of the system (2.1) is

locally asymptotically stable if R0 > 1.

Proof: The characteristic equation of the Jaco-

bian matrix (3.7) at the endemic equlibrium point

is given by

P (λ) = λ5+B1λ
4+B2λ

3+B3λ
2+B4λ+B5 = 0

(3.8)

where the notation of the coefficients are:

B1 = b+ c+ d+ e+ k + µ

B2 = bc+ bd+ cd+ ek+µe+ (e+ k+µ)(b+

c+ d)− βηS∗

N∗ [p(1− q) + q]
B3 = (b+c+d)+(e+k+µ)(bc+bd+cd+(b+

c+d)(ek+µe)− S∗

N∗ [R0bcd+βη(p(1− q) + q)]
B4 = (ek + µe)(bc+ bd+ cd+ βηS∗

N∗ (pq − p−

q))− R0bcdS∗

N∗ (e+ k + µ)
B5 = βηS∗e

N∗ (k + µ)(pqd− pc− qd)

where k = {β(I∗+qA∗)
N∗ =

bcdeπR0
N∗[bcde−[pcαηθ+(1−p)γηθd+ϕθdc]](1−

1
R0

)}
Then the eigenvalues of the characteristic
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equation (3.8) will be negative if it fulfill the

Routh-Hurwitz criteria [15] that are Bi > 0 for

i = 1, 2, 3, 4, 5 and the determinant of p(λ) > 0
that is

From the Routh - Hurwitz criteria [15] the

determinant of the Hurwitz matrix becomes non

negative if the following conditions holds true and

it follows that all eigenvalues of the characteristic

equation (3.8) has negative real part if and only

if Bi > 0, (i = 1, 2, 3, 4, 5) which implies that

(i)B1 > 0 Since all the parameters in the models

are positives.

(ii) B2 > 0 ⇔ bc + bd + cd + ek + µe + (e +

k + µ)(b+ c+ d) + βηqp
R0

> βη
R0

(p+ q)
(iii) B3 > 0⇔ (b+ c+ d) + (e+ k + µ)(bc+

bd+cd+(b+c+d)(ek+µe)+ βη
R0

(pqd+pq) >
βη
R0

(pc+ qd+ p+ q)
(iv) B4 > 0⇔ e(k+µ)(bc+ bd+ cd+ βηqp

R0
) +

(e+k+µ)(βηqpdR0
) > βη

R0
e(k+µ)(p+q)+ βη

R0
(e+

k + µ)(pc+ qd)
(v) B5 > 0 ⇔ e(βηqpdR0

)(k + µ) > eβηqR0
(k +

µ)(pc+ qd)).

and the determinant,

D1 = B1 > 0
D2 = B1B2 > 0
D3 = B1B2 −B3 > 0
D4 = B1B2B3 −B2

3 −B2
1B4 > 0

D5 = B1B2B3B4 + 2B1B4B5 + B2B3B5 −
B1B

2
2B5 −B2

1B
2
4 −B2

3B4 −B2
5 > 0.

Therefore the system (2.1) shows local asymptotic

stability at E1 when R0 > 1 and conditions for

D1, D2, D3, D4, D5 are satisfied.

Theorem 5. The endemic equilibrium point of

the model equation(2.1) is globally asymptoti-

cally stable if R0 > 1.

Proof: To show the result, we define the following

Lyapunov function as:

L(S∗, E∗, A∗, I∗, Q∗) =[S − S∗ − S∗ ln( S
S∗

)]

+ [E − E∗ − E∗ ln( E
E∗

)]

+ [A−A∗ −A∗ ln( A
A∗

)]

+ [I − I∗ − I∗ ln( I
I∗

)]

+ [Q−Q∗ −Q∗ ln( Q
Q∗

)]

(3.9)

Then by taking the time derivative of

L(S∗, E∗, A∗, I∗, Q∗), we obtain:

dL
dt = (S′ − S∗

S S
′) + (E′ − E∗

E E
′) + (A′ −

A∗

A A
′) + (I ′ − I∗

I I
′) + (Q′ − Q∗

Q Q
′)

= (1 − S∗

S )dSdt + (1 − E∗

E )dEdt + (1 − A∗

A )dAdt +
(1− I∗

I )dIdt + (1− Q∗

Q )dQdt

= [1− S∗

S ][π+ θQ− (λ+µ)S] + [1− E∗

E ][λS−
(µ + η + ϕ)E] + [1 − A∗

A ][(1 − p)ηE − (µ +
γ)A] + [1 − I∗

I ][pηE − (µ + α+)I] + [1 −
Q∗

Q ][αI + γA+ ϕE − (θ + µ)Q]
= (π + θQ + λS∗ + µS∗ − λS − µS − π S∗

S −
θQS∗

S )+(λS+µE∗+ηE∗+ϕE∗−µE−ηE−
ϕE − λSE∗

E ) + (ηE + µA∗ + γA∗ + A∗

A pηE −
pηE − µA− γA− A∗

A ηE) + (pηEµI∗ + αI∗ −
µI − αI − I∗

I pηE) + (αI + γI + ϕE + θQ∗ +
µQ∗ − θQ− µQ− αI Q

∗

Q − γA
Q∗

Q − ϕE
Q∗

Q )
Now after some simplifications
dL
dt = [π + (λ + µ)S∗ + (µ+ η + ϕ)︸ ︷︷ ︸

b

E∗ +

A∗

A pηE + (µ+ γ)︸ ︷︷ ︸
c

A∗ + (µ+ α)︸ ︷︷ ︸
d

I∗ +

(θ + µ)︸ ︷︷ ︸
e

Q∗] − [(S + E +A+ I +Q)︸ ︷︷ ︸
N

µ +

θQS∗

S + λSE
∗

E + A∗

A ηE + I∗

I pηE + αI Q
∗

Q +
γAQ∗

Q + ϕEQ∗

Q ]
= [π + (λ + µ)S∗ + bE∗ + pηEA∗

A + cA∗ +
dI∗ + eQ∗]− [Nµ+ θQS∗

S + λSE
∗

E + ηEA∗

A +
pηE I∗

I + (αI + γA+ ϕE)Q
∗

Q ], N ≤ π
µ

= [π + (λ + µ)S∗ + bE∗ + pηEA∗

A + cA∗ +
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dI∗ + eQ∗] − [π + θQS∗

S + λSE
∗

E + ηEA∗

A +
pηE I∗

I + αI Q
∗

Q + γAQ∗

Q + ϕEQ∗

Q ]
= [(λ + µ)S∗ + bE∗ + pηEA∗

A + cA∗ + dI∗ +
eQ∗] − [θQS∗

S + λSE
∗

E + ηEA∗

A + pηE I∗

I +
αI Q

∗

Q + γAQ∗

Q + ϕEQ∗

Q ]
dL
dt = M −K
where M = (λ+µ)S∗+ bE∗+ pηEA∗

A + cA∗+
dI∗ + eR∗

K = θQS∗

S +λSE∗

E +ηEA∗

A +pηE I∗

I +αI Q
∗

Q +
γAQ∗

Q + ϕEQ∗

Q

N = S + E + A + I + Q and

N∗ = S∗ + E∗ +A∗ + I∗ +Q∗

Thus if K < M , then dL
dt < 0. Nothing that

dL
dt = 0 if and only if

S = S∗, E = E∗, A = A∗, I = I∗, Q = Q∗.

Therefore the largest compact invariant set

in {(S∗, E∗, A∗, I∗, Q∗) ∈ Ω; dLdt = 0} is a

singleton E1 is the endemic equilibrium point of

the system (2.1). By LaSalle’s invariant principle

[15], it implies that E1 is globally asymptotically

stable in Ω if M < k and R0 > 1.

Sensitivity analysis allows us to assess the im-

pact that changes in a certain parameter will have

on the model and it can help some one to de-

termine which parameters are the key drivers of

a model’s results. To investigate which param-

eters have high impact on the R0, we apply the

approach presented in [18]. The main goal of

this section is to perform sensitivity analysis of

corona virus transmission dynamic model to the

parameters describing in it. We perform sensitiv-

ity analysis by calculating the sensitivity indices

of the basic reproduction number R0 in order to

determine whether COVID-19 can be spread in

the population or not. These indices tell us how

crucial each parameter is on the transmission of

the COVID-19. Following [17, 21], we used the

normalized forward sensitivity index also called

elasticity as it is the backbone of nearly all other

sensitivity analysis techniques [21] and are com-

putationally efficient[22]. For instance, the nor-

malized forward sensitivity index of the basic re-

production number, R0 with respect to a parame-

ter value, P is given by:

ΥR0
p = ∂R0

∂P
× P

R0
. (4.10)

The explicit expression ofR0 is given by

R0 = βη(pq(µ+γ+ζ)+(α+µ+ζ)(1−p))
(η+µ+ϕ)(µ+γ+ζ)(α+µ+ζ)(µ+θ) .

Since R0 depends only on ten parameters, we

derive an analytical expression for its sensitivity

to each parameter using the normalized forward

sensitivity index as in [18] by taking the values

of the paramters from table 2 and computed as

follows:

Υ(R0)
β = ∂R0

∂β ×
β
R0

= 1,

Υ(R0)
η = ∂R0

∂η ×
η
R0

= µ+ϕ
η+µ+ϕ ,

Υ(R0)
p = ∂R0

∂p × p
R0

=
[q(µ+γ+ζ)−(α+µ+ζ)]p

pq(µ+γ+ζ)+(α+µ+ζ)(1−p) ,

Υ(R0)
q = ∂R0

∂q × q
R0

=
pq(µ+γ+ζ)

pq(µ+γ+ζ)+(α+µ+ζ)(1−p) ,

Υ(R0)
µ = ∂R0

∂µ ×
µ
R0

=
[ [p+q(1−p)][(η+µ+ϕ)(µ+γ+ζ)(µ+α+ζ)]

(η+µ+ϕ)(µ+γ+ϕ)(µ+α+ζ)(µ+θ) −
[p(µ+γ+ζ)+q(α+µ+ζ)(1−p)]

(η+µ+ϕ)(µ+γ+ϕ)(µ+α+ζ)(µ+θ)×
[(µ+γ+ζ)(µ+α+ζ)+(η+µ+ϕ)(µ+α+ζ)+(η+µ+ϕ)(µ+γ+ζ)]

(η+µ+ϕ)(µ+γ+ϕ)(µ+α+ζ)(µ+θ) ]×
µ

p(µ+γ+ζ)+q(α+µ+ζ)(1−p) ,

Υ(R0)
ϕ = ∂R0

∂ϕ ×
ϕ
R0

= −ϕ
µ+η+ϕ ,
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Υ(R0)
ζ = ∂R0

∂ζ × ζ
R0

=
( [pq+(1−p)][(µ+γ+ζ)(µ+α+ζ)]

(α+µ+ζ)(µ+γ+ζ) −

[pq(µ+γ+ζ)+(α+µ+ζ)(1−p)][2µ+2ζ+α+γ]
(α+µ+ζ)(µ+γ+ζ) )

× ζ
pq(µ+γ+ζ)+(α+µ+ζ)(1−p) ,

Υ(R0)
γ = ∂R0

∂γ × γ
R0

=
−(α+µ+ζ)(1−p)γ

(µ+γ+ζ)[pq(µ+γ+ζ)+(α+µ)(1−p)] ,

Υ(R0)
α = ∂R0

∂α × α
R0

=
−pq(µ+γ+ζ)

(µ+α+ζ)[pq(µ+γ+ζ)+(α+µ+ζ)(1−p)] .

Υ(R0)
θ = ∂R0

∂θ ×
η
R0

= −θ
µ+θ ,

In this section, our main focus is to setup an

optimal control problem relative to the epidemic

model (2.1). We introduce to SEAIQ epidemic

model (2.1) a control function u1(t) that repre-

sent the effort of preventation(vaccination, using

mask, hand washing, keeping social distance etc)

to prevent susceptible individuals from exposing

to COVID-19 disease. Thus, the transmission dy-

namic of COVID-19 model with optimal control

is governed by nonlinear system of differential

equations as follows:



dS
dt = π + θQ− (1− u1)λS − µS,
dE
dt = (1− u1)λS − ηE − ϕE − µE,
dA
dt = (1− p)ηE − γA− (µ+ ζ)A,
dI
dt = pηE − αI − (µ+ ζ)I,
dR
dt = αI + γA+ ϕE − (θ + µ)Q.

(5.11)

S(0) = S0 > 0, E(0) = E0 ≥ 0, A(0) = A0 ≥
0, I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0.

Table 1: Sensitivity Indices of the Basic Model

Parameters in R0

Parameter Symbol Sensitivity indices

β +1

η 0.9943

q 0.1273

p 0.0646

θ -0.0099

ζ -0.0151

α -0.0549

µ -0.3488

γ -0.6288

ϕ -0.9470
From table[1] above those parameters that have

positive indices, β, η, q and p show that they

have great impact on expanding the disease in the

population if their values are increasing. Because

the basic number of copies increases as the value

increases.

Furthermore, those parameters in which their sen-

sitivity indices are negative, θ, ζ, α, µ, γ

and ϕ have an influence of minimizing the en-

demic nature of the disease in the community due

to the reason that the basic reproduction number

decreases as their values decrease.

Where λ = β(I+qA)
N is the force of infection in

the model to control.

The optimal control problem is to minimize the

objective (cost functional) (J) considering the

costs of preventation(vaccination, using mask,

hand washing, keeping social distance etc) of sus-

ceptible individuals over a fixed period of time T .

Mathematically, the optimal control problem con-

sists of minimizing the objective functional J , on

a fixed time interval T takes the form;

J(u1(t)) =
∫ T

0
[M1E+M2A+M3I+M4Q+1

2k1u
2
1(t)]dt −→ min

(5.12)

subject to
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g(x, u, t) =



dS
dt = π + θQ− (1− u1) βN (I + qA)S − µS,
dE
dt = (1− u1) βN (I + qA)S − ηE − ϕE − µE,
dA
dt = (1− p)ηE − γA− (µ+ ζ)A,
dI
dt = pηE − αI − (µ+ ζ)I,
dR
dt = αI + γA+ ϕE − (θ + µ)Q,

(5.13)

with initial condition, S(0) = S0 > 0,
E(0) = E0 ≥ 0, A(0) = A0 ≥ 0,
I(0) = I0 ≥ 0, Q(0) = Q0 ≥ 0 and

Ωε = {u1 : 0 ≤ u1 ≤ 1, t ∈ [0, T ]},

where M1,M2,M3,M4,
k1
2 are positive weights

that balance the size of the integrand terms to re-

duce the dominance of any of the term in the in-

tegral. Such that the constant weight k1 measures

the cost or effort required for the implementation

of prevention while M1,M2,M3 and M4 mea-

sures the relative importance of reducing the as-

sociated classes on the spread of the disease. The

parameter T is the duration of time, in a days, of

prevantion.

We assumed that 0 ≤ u1 < 1, since avoiding

the contact between the entire susceptible and in-

fectious individuals are impossible in reality. In

practice, preventing the entire society is impos-

sible due to many factors such as financial and

human resource constraint. If u1 = 0 then no

control measure is taken and the model equation

(5.11) is equivalent to (2.1). On the other hand,

if u1 = 1, it implies our control is 100% success.

But in the reality this case is not possible and our

aim is to minimize the number of exposed, in-

fected, asymptomatic , quarantine and cost. Thus,

we seek to find an optimal controls (u∗1) such that

J(u∗1) = min{J(u1 ∈ Ωε} (5.14)

where Ωε is the set of admissible control as

defined above.

The solution of the optimal control prob-

lem is the vector function x∗(.) =
(S∗(.), E∗(.), A∗(.), I∗(.), Q∗(.)) ∈ R5

+,

associated with an admissible control

u∗ = u∗1 ∈ Ωε on the time interval [0, T ]
that minimize the cost functional (5.12) where u∗1
are Lebesgue measurable function on [0, 1] that

is the control u∗1 are piecewise continuous and

integrable.

Theorem 6. There exist an optimal control u∗ =
u∗1 and a corresponding solution vector x∗ to the

state initial value problem (5.11) that minimizes

the cost functional J(u) of (5.12) over the set of

admissible control Ωε.

Proof : The non trivial requirement on the set of

admissible controls and the set of end conditions

are followed by [23].

i. The set of all solution to system (5.11) with cor-

responding control functions in Ωε is non-empty.

ii. The control unit is convex and closed

iii. The right hand side of the state system is

bounded by a linearized function in the state and

control variables.

iv. The integral of the objective function is con-

vex.

v. There exist a constants c1, c2 > 0 and β > 1
such that the integrand of the objective functional

A. Existence of Optimal Control Solution 
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satisfies, M1E+M2A+M3I +M4Q+ k1
2 u

2
1 ≥

c1(|u1|2)
β
2 − c2.

In order to established condition (i), we con-

sider the Picard-Lindelȯf existence theorem [23].

If g(x, u, t) is bounded, continuous, and lipschitz

in the state variables, then there exists a unique

solution corresponding to every admissible con-

trol Ωε . Hence, for any u ∈ Ωε and the state

variables, we have

0 < N ≤ π

µ
(5.15)

and non empty by model assumption. Further-

more, with the bounded established (5.15) it

implies that the state system is continuous and

bounded. It is possible to show the boundedness

of the partial derivative with respect to the state

variable i.e ∂g
∂x exist and finite, which established

the system is Lipschitz with respect to the state

variables. This established the proof of condition

(i).

For condition (ii) consider

Ωε = {u ∈ R : ||u|| ≤ 1− ε.
Assume that u1 ∈ Ωε and λ ∈ [0, 1], such that

||u1|| ≤ 1− ε.
Hence, 0 ≤ λ||u1|| ≤ 1 − ε, for u1 ∈ Ωε and

λ ∈ [0, 1].
Thus the control set is convex and closed by

definition.

To prove condition (iii), we consider the system

(5.11). Then

dN
dt = dS

dt + dE
dt + dA

dt + dI
dt + dQ

dt ,

= π − µN − ζ(A+ I) ≤ π − µN
dN
dt + µN ≤ π

lim
t→∞

sup N(t) ≤ π
µ .

Therefore, all solutions of the model (5.11) are

bounded. We can write system (5.11) in matrix

form as

F (t, x, u) = G(t, x) +H(t, x)U ,

where

F (t, x, u) =



π + θQ− (1− u1)λS − µS
(1− u1)λS − ηE − ϕE − µE
(1− p)ηE − γA− (µ+ ζ)A

pηE − αI − (µ+ ζ)I
αI + γA+ ϕE − (θ + µ)Q


,

G(t, x) =



π + θQ− (λ+ µ)S
λS − (µ+ η + ϕ)E

(1− p)ηE − (µ+ γ + ζ)A
pηE − (µ+ α+ ζ)I

αI + γA+ ϕE − (θ + µ)Q



H(t, x) =



λS 0 0
−λS (η − 1)E 0

0 −(1− p)ηE −A
0 −pηE −I
0 E I +A


and

U =


u1

0
0

, It gives a linar function of control

and state variable.

Then the norm of F (t, x, u) = G(t, x) +
H(t, x)U is

||F (t, x, u)|| = ||G(t, x) +H(t, x)U ||
||F (t, x, u)|| ≤ ||G(t, x)||+ ||H(t, x)U ||

||F || ≤ ||G||||X(t)||+ ||H||||U(t)|| ≤
max(||G||, ||H||)

This shows that the right hand side is bounded

by the sum of the state and control variable.

This complete the proof of condition (iii) which

is bounded in the state and control variables.

(iv) The integrand in the objective functional

which is a cost functional,

g(x, t, u) = M1E +M2A+M3I +M4Q+ 1
2k

2
1

is an affine function.

Recall that any affine function is a convex and

the sum of a convex function is a convex [24].

Therefore, g(x, t, u) is convex on Ωε.
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Proof of condition (v)

Given g(x, t, u) = M1E + M2A + M3I +
M4Q+ 1

2k‘u
2
1(t).

g(x, t, u) ≥ 1
2k1u

2
1(t),

≥ c1[u2
1(t)]

β
2 − c2, where c1 = 1

2k1, c2 > 0 and

β = 2.

Thus, M1E + M2A + M3I + M4Q + k1
2 u

2
1 ≥

c1(|u1|2)
β
2 − c2.

Since all the above conditions are satisfied, we

conclude that there exists an optimal controls

u∗1 such that (x, u∗) that minimize the cost

functional of (5.12) over the set of admissible

control.

Theorem 7. The optimal control problem (5.14)

with fixed final time T admits a unique optimal

solution (S∗, E∗, A∗, I∗, Q∗) associated with an

optimal control u = u1 for all t ∈ [0, T ]. More-

over, there exist adjoint function λi,

for i = 1, 2, 3, 4, 5 such that

dλ1
dt = (1− u1) βN (I + qA)(λ1 − λ2) + µλ1,

dλ2
dt = −M1 + (η + ϕ+ µ)λ2 − (1− p)ηλ3−

pηλ4 − ϕλ5,

dλ3
dt = −M2 + (1− u1) βN qS(λ1 − λ2)+

(γ + µ+ ζ)λ3 − γλ5,

dλ4
dt = −M3 + (1− u1) βN S(λ1 − λ2)+

(α+ µ+ ζ)λ4 − αλ5,

dλ5
dt = −M4 + θ(λ5 − λ1) + µλ5.

with transiversality conditions

λi(T ) = 0, i = 1, 2, 3, 4, 5.

Furthermore, the following properties holds:

u∗1 = min{max{0, β(I∗+qA∗)S∗(λ2−λ1)
Nk1

}, 1}

Proof: The Hamiltonian function associated

with the system is defined as follows:

H(t, S,E,A, I,Q, u1) = M1E(t) + M2A(t) +

M3I(t) +M4Q+ 1
2k1u

2
1(t) +

5∑
i=1

λi(t)gi(t)

= (M1E + M2A + M3I + M4Q) + 1
2(k1u

2
1) +

λ1[π + θQ− (1− u1) βN (I + qA)S − µS] +

λ2[(1 − u1) βN (I + qA)S − ηE − ϕE − µE] +
λ3[(1− P )ηE − γA− (µ+ ζ)A]

+ λ4[PηE − αI − (µ + ζ)I] + λ5[αI + γA +
ϕE − (θ + µ)Q]
where λi(t), for i = 1, 2, 3, 4, 5 are the adjoint

functions to be determined suitably. The form

of the adjoint equations and transversality

conditions are standard results from PMP. The

adjoint (costate) equation is the negative value

of the Hamiltonian function differentiated with

respect to each costate variable. It is given by

dλ1
dt = −(∂H

∂S
) = (1− u1) βN (I + qA)(λ1 − λ2) + µλ1,

dλ2
dt = −(∂H∂E ) = −M1 + (η + ϕ+ µ)λ2 − (1− p)ηλ3−

pηλ4 − ϕλ5,

dλ3
dt = −(∂H∂A ) = −M2 + (1− u1) βN qS(λ1 − λ2)+

(γ + µ+ ζ)λ3 − γλ5,

dλ4
dt = −(∂H∂I ) = −M3 + (1− u1) βN S(λ1 − λ2)+

(α+ µ+ ζ)λ4 − αλ5,

dλ5
dt = −(∂H∂R ) = −M4 + θ(λ5 − λ1) + µλ5.

(5.16)

With transversality conditions: λi(T ) = 0, for

i = 1, 2, 3, 4, 5.
Stationary condition is obtained by differentiating

Hamiltonian function with respect to control vari-

able (u1). By the optimality condition, we have:
∂H
∂u1

= 0.
(i) ∂H

∂u1
= k1u1 + β(I+qA)

N S(λ1 − λ2) = 0 at

u1 = u∗1(t)

u∗1(t) = β(I∗+qA∗)S∗(λ2−λ1)
Nk1

,

so that by using the bounds for the control u1(t),

B. The nature of the optimal control solution 
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we obtain

u∗1(t) =



β(I∗+qA∗)S∗(λ2−λ1)
Nk1

if 0 ≤ β(I∗+qA∗)S∗(λ2−λ1)
Nk1

≤ 1,

0, if β(I∗+qA∗)S∗(λ2−λ1)
Nk1

≤ 0,

1, if β(I∗+qA∗)S∗(λ2−λ1)
Nk1

≥ 1,

(5.17)

In compact notation optimal control u1 can be

simplified:

u∗1 = min{max{0, β(I∗ + qA∗)S∗(λ2 − λ1)
Nk1

}, 1}.
(5.18)

State equation is obtained by differentiating

Hamiltonian function with respect to each

costate variable. Using (5.18) we obtain the

following optimality system:



dS
dt = ∂H

∂λ1
= π + θQ− (1− [min{max{0, β(I∗+qA∗)S∗(λ2−λ1)

Nk1
}, 1}])λS − µS,

dE
dt = ∂H

∂λ2
= (1− [min{max{0, β(I∗+qA∗)S∗(λ2−λ1)

Nk1
}, 1}])λS − (µ+ η + ϕ)E

dA
dt = ∂H

∂λ3
= (1− p)ηE − (µ+ γ + ζ)A

dI
dt = ∂H

∂λ4
= pηE − (µ+ α+ ζ)I

dQ
dt = ∂H

∂λ5
= (αI + γA+ ϕE+)− (µ+ θ)Q

subject to the following initial conditions:

S(0) = S0, E(0) = E0, A(0) = A0,

I(0) = I0, Q(0) = Q0, and

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0,
λ4(T ) = 0, λ5(T ) = 0,
This completes the proof.

In this section, the numerical solutions of op-

timality system are discussed. To conduct the

study, a set of meaningful values are assigned to

the model parameters. These values are either

taken from literature or assumed. Using the

parameter values given in table 2 below and the

initial conditions

S(0) = 3000, E(0) = 7000, A(0) =
600, I(0) = 500 and Q(0) = 100. For the

adjoint system we set terminal conditions

λ(T ) = 0; i = 1, 2, 4, 5 where T = 100 is

simulation time. We considered the numerical

value of the controls u1; between zero and one as

they are not 100% effective. The cost coefficients

corresponding to control variables are estimated

to be k1 = 2 and the relative importance of re-

ducing the associated classes on the spread of the

disease are M1 = 1,M2 = 3,M3 = 2,M4 = 5.
Then the simulation process are performed using

software MATLAB R2015b with ode45 solver

Table 2: The values of parameters used in the

simulations
Parameter Value Reference

π 2 [2]

β 0.064 [2]

η 0.0024 [1]

α 0.016 [12]

ϕ 0.4 assumed

θ 0.0002 [17]

γ 0.054 assumed

q 1.002 assumed

p 0.067 assumed

µ 0.02 [1]

ζ 0.001 [17]

VI. NUMERICAL SIMULATION 
              OF THESYSTEM 
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(a), (b),

Figure 2: Dynamics of Exposed and Asymp-

tomatic individuals without optimal control

(c) (d)

Figure 3: Dynamics of Infected and Quarantined

individuals without optimal control

(e), (f)

Figure 4: Dynamics of Exposed and Infected in-

dividuals with optimal control

g, (h)

Figure 5: Dynamics of Quarantined and Asymp-

tomatic individuals with optimal control

(i), (j)

Figure 6: Dynamics of Exposed and Asymp-

tomatic individuals with and without optimal con-

trol

(k), (l)

Figure 7: Dynamic of Infected and Quarantined

individuals with and without optimal control

(m), (n)

Figure 8: Dynamics of reducing effective contact

rate with Exposed and Asymptomatic individuals

by applying optimal control.

(o), (p)

Figure 9: Dynamics of reducing effective contact

rate with Infected and Quarantined individuals

by applying optimal control.

, (q)

Figure 10: Total population with optimal control
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From the graph of numerical simulation , con-

sidering our assumption, initial condition and pa-

rameter values we deduce the following: Fig-

ure2(a), 2(b),3(c), 3(d) shows the dynamics of

exposed , asymptomatic and infeccted individ-

uals with out optimal control such that all ex-

posed, asymptomatic and infected individuals are

decreasing by joining the quarantined class due

to reduced the transmission dynamics of the dis-

ease.Figure 3d show that quarantined individuals

increased firstly due to more number of exposed,

asymptomatic and infected join the class and latr

on decreased due to the reason that quarantined

individuals joins the susceptible class. Figure

4(e) ,4(f), 5(g), 5(h) shows that the dynamics of

exposed, infected, quarantined and asymptomatic

individuals with optimal control respectively such

that they damped down when control is applied.

Figure 6(i) ,6(j), 7(k), 7(l) shows that the dyn-

macis of exposed, asymptomatic , infected and

quarantined individuals with and without optimal

control at the same time such that infctious indi-

viduals damped down when control is applied and

raised when control is not applied. Figure 8(m),

8(n), 9(o), 9(p) shows that the dynamic of varying

effective contact rate on exposed, asymptomatic,

infected and quarantined individuals such that de-

creasing the effective contact rate with these pop-

ulation minimize the transmission dynamics of

the disease. Figure 10(q) shows that the dynam-

ics of the total population with optimal control

such that applying the optimal control on the total

population increased the susceptible individuals

and decreased the exposed, asymptomatic ,infec-

cted and quarantined individuals. In general from

this simulation we have seen that that the im-

pact of control on susceptible, exposed, asymp-

tomatic, infected and quarantined population re-

spectively. It show that the density of suscepti-

ble population is increasing in the presence of the

optimal control while the population of exposed,

asymptomatic, infected and quarantined individ-

uals are damped down when control is applied.

Thus, as expected the number of susceptible pop-

ulatin S(t) is increasing in the presence of con-

trol and at the same time the number of exposed

E(t), asymptomaticA(t), infected I(t) and quar-

antined Q(t) populations are decreasing in the

presence of control and increasing in the absence

of control.

In this paper, we have considered a special

disease, COVID-19 infection. We have devel-

oped a five-compartmental model of COVID-19

infectious disease, namely: susceptible, exposed,

asymptomatic, infective and quarantined popu-

lations and investigated the dynamical behavior

of this model. With the next generation matrix

method, we have found as basic reproduction

number of the system, which helps us to deter-

mine the dynamical behavior of the system. We

have established two distinct equilibriums for

the model with both local and global stability

on the disease-free and endemic equilibrium

points. The disease free equilibrium point E0 is

local asymptotic stability when R0 < 1. When

R0 > 1, the endemic equilibrium E1 exists

and the system becomes unstable at E0 and

locally asymptotically stable at E1 under some

conditions.

We setup an optimal control problem relative

to the epidemic model so as to minimize the

exposed, asymptomatic, infective and quaran-

tined populations as well as to minimize the cost

of control. We have considered the prevention

controls as it reduce the transmission dynamic

VII. CONCLUSSION AND 
      RECOMMENDATION 
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of COVID-19 infection. The control functions

u1 (preventation i.e (vaccination, using mask,

hand washing, keeping social distance etc))are

designed in such away that they minimize the

objective functional (cost function) as given in

(5.12).

It has been found that optimal control can

more effectively reduce the number of exposed,

asymptomatic infective and quarantined individ-

uals by preventing the susceptible population.

Controlling the spread of epidemics is currently

a complex and important research topic. So, to

predict and identify the cost-effective strategies

to control the spread of COVID-19 and minimize

the cost of the control programme are the primary

goals of health administrators and policy-makers.

Since eradication of COVID-19 infection remains

a challenge we recommend that, the government

should give a vaccination for susceptible indi-

viduals before the out breaking of the disease

and introduce education programmers for the

whole population. Also, there is need to increase

the number of hospitals to deal with COVID-19

infection because COVID-19 infections pose

serious health problem.
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